Prex Embedded Real-time OS

WPrex-

Smart. Simple. Secure.

Prex delivers extremely portable and realtime

microkernel for embedded systems.

Prex is an open source, real-time operating system for embedded systems. Prex is
designed specifically for tiny, resource-constrained platforms. It is written in 100%
ANSI C and its microkernel is highly portable. Prex supports POSIX interface and it
provides file systems, an embedded libc, and CmdBox which includes tiny versions of

Unix utilities.

Key feature of Prex:

Real-Time:

A preemptive, multithreaded kernel provides
the basis for robust, power-efficient and
responsive Prex.

‘Memory Protection:

The system can be configured with MMU or
without MMU. Its memory protection logic
can prevent the entire system from any
application faults.

Portability:

The microkernel has a well defined hardware
abstraction layer in it, and thus the developer
can easily port the kernel for the different
architecture or platform.

License:
Prex is royalty-free software released under
revised BSD license

Power Management:

Prex power management framework
provides device/system power transition,
power policy management, inactivity timer
and automatic processor frequency control.

Security:

The microkernel provides the capability
based security feature. The kernel or system
servers can be protected by malicious
applications. It also supports pathname-
based access control.

POSIX Support:

The POSIX emulation libraries allow the
system to use the existing Unix application
properties.

Small Footprint:
The size of a kernel module is only 25K bytes.

http://prex.sf.net

Prex Embedded Real-timeOS |

Real-time Tasks Unix Processes

|

POSI¥ Emulation Library

Realtme thrary] | o b
E System Servers i
: Prooess File System Exec Metworl: i
1| _Server Server Server Server | !
User Mode e D |
Kernel f\r'II:IdE1]
Micro Kernel
Architecture Dependent Layer Device Drivers
Processor Hardware
Technical specifications:
Prex Microkernel Process Primitive
* Preemptive priority scheduling or FIFO *Process ID
scheduling fork
* 256 priority levels *exec
* Fast context switching
* Memory protection File System
* Shared memory *Multithreaded VFS framework
* Synchronous IPC Buffer cache
* Fault trapping *FIFO / pipe
+ POSIX signal *RAM filesystem
» Counting Semaphore *FAT filesystem
* Condition Variables *Dev filesystem
* Mutex with priority inheritance
* Sleep timers User Applications
* One shot or periodic timers *Embedded libc
* POSIX 1.e based Task capability *CmdBox
*Tiny shell
Device Driver ‘Terminal lock utility
* Separated from kernel module *Software Installer
* Nested interrupt service routines *Many sample applications
* Prioritized interrupt service threads
« Deferred procedure call Supported Target
* Power management framework *ARM
* Dynamic voltage scaling *x86
* TTY *Power PC
http://prex.sf.net

